40 research outputs found

    Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits using DNA Strand Displacement

    Full text link
    We propose a novel theoretical biomolecular design to implement any Boolean circuit using the mechanism of DNA strand displacement. The design is scalable: all species of DNA strands can in principle be mixed and prepared in a single test tube, rather than requiring separate purification of each species, which is a barrier to large-scale synthesis. The design is time-responsive: the concentration of output species changes in response to the concentration of input species, so that time-varying inputs may be continuously processed. The design is digital: Boolean values of wires in the circuit are represented as high or low concentrations of certain species, and we show how to construct a single-input, single-output signal restoration gate that amplifies the difference between high and low, which can be distributed to each wire in the circuit to overcome signal degradation. This means we can achieve a digital abstraction of the analog values of concentrations. Finally, the design is energy-efficient: if input species are specified ideally (meaning absolutely 0 concentration of unwanted species), then output species converge to their ideal concentrations at steady-state, and the system at steady-state is in (dynamic) equilibrium, meaning that no energy is consumed by irreversible reactions until the input again changes. Drawbacks of our design include the following. If input is provided non-ideally (small positive concentration of unwanted species), then energy must be continually expended to maintain correct output concentrations even at steady-state. In addition, our fuel species - those species that are permanently consumed in irreversible reactions - are not "generic"; each gate in the circuit is powered by its own specific type of fuel species. Hence different circuits must be powered by different types of fuel. Finally, we require input to be given according to the dual-rail convention, so that an input of 0 is specified not only by the absence of a certain species, but by the presence of another. That is, we do not construct a "true NOT gate" that sets its output to high concentration if and only if its input's concentration is low. It remains an open problem to design scalable, time-responsive, digital, energy-efficient molecular circuits that additionally solve one of these problems, or to prove that some subset of their resolutions are mutually incompatible.Comment: version 2: the paper itself is unchanged from version 1, but the arXiv software stripped some asterisk characters out of the abstract whose purpose was to highlight words. These characters have been replaced with underscores in version 2. The arXiv software also removed the second paragraph of the abstract, which has been (attempted to be) re-inserted. Also, although the secondary subject is "Soft Condensed Matter", this classification was chosen by the arXiv moderators after submission, not chosen by the authors. The authors consider this submission to be a theoretical computer science paper

    An analysis of simple computational strategies to facilitate the design of functional molecular information processors

    Get PDF
    BACKGROUND: Biological macromolecules (DNA, RNA and proteins) are capable of processing physical or chemical inputs to generate outputs that parallel conventional Boolean logical operators. However, the design of functional modules that will enable these macromolecules to operate as synthetic molecular computing devices is challenging. RESULTS: Using three simple heuristics, we designed RNA sensors that can mimic the function of a seven-segment display (SSD). Ten independent and orthogonal sensors representing the numerals 0 to 9 are designed and constructed. Each sensor has its own unique oligonucleotide binding site region that is activated uniquely by a specific input. Each operator was subjected to a stringent in silico filtering. Random sensors were selected and functionally validated via ribozyme self cleavage assays that were visualized via electrophoresis. CONCLUSIONS: By utilising simple permutation and randomisation in the sequence design phase, we have developed functional RNA sensors thus demonstrating that even the simplest of computational methods can greatly aid the design phase for constructing functional molecular devices. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1297-x) contains supplementary material, which is available to authorized users

    A Modern Mode of Activation for Nucleic Acid Enzymes

    Get PDF
    Through evolution, enzymes have developed subtle modes of activation in order to ensure the sufficiently high substrate specificity required by modern cellular metabolism. One of these modes is the use of a target-dependent module (i.e. a docking domain) such as those found in signalling kinases. Upon the binding of the target to a docking domain, the substrate is positioned within the catalytic site. The prodomain acts as a target-dependent module switching the kinase from an off state to an on state. As compared to the allosteric mode of activation, there is no need for the presence of a third partner. None of the ribozymes discovered to date have such a mode of activation, nor does any other known RNA. Starting from a specific on/off adaptor for the hepatitis delta virus ribozyme, that differs but has a mechanism reminiscent of this signalling kinase, we have adapted this mode of activation, using the techniques of molecular engineering, to both catalytic RNAs and DNAs exhibiting various activities. Specifically, we adapted three cleaving ribozymes (hepatitis delta virus, hammerhead and hairpin ribozymes), a cleaving 10-23 deoxyribozyme, a ligating hairpin ribozyme and an artificially selected capping ribozyme. In each case, there was a significant gain in terms of substrate specificity. Even if this mode of control is unreported for natural catalytic nucleic acids, its use needs not be limited to proteinous enzymes. We suggest that the complexity of the modern cellular metabolism might have been an important selective pressure in this evolutionary process

    A thermodynamic approach to designing structure-free combinatorial DNA word sets

    Get PDF
    An algorithm is presented for the generation of sets of non-interacting DNA sequences, employing existing thermodynamic models for the prediction of duplex stabilities and secondary structures. A DNA ‘word’ structure is employed in which individual DNA ‘words’ of a given length (e.g. 12mer and 16mer) may be concatenated into longer sequences (e.g. four tandem words and six tandem words). This approach, where multiple word variants are used at each tandem word position, allows very large sets of non-interacting DNA strands to be assembled from combinations of the individual words. Word sets were generated and their figures of merit are compared to sets as described previously in the literature (e.g. 4, 8, 12, 15 and 16mer). The predicted hybridization behavior was experimentally verified on selected members of the sets using standard UV hyperchromism measurements of duplex melting temperatures (T(m)s). Additional experimental validation was obtained by using the sequences in formulating and solving a small example of a DNA computing problem

    Antimicrobial Nanoplexes meet Model Bacterial Membranes: the key role of Cardiolipin

    Get PDF
    Antimicrobial resistance to traditional antibiotics is a crucial challenge of medical research. Oligonucleotide therapeutics, such as antisense or Transcription Factor Decoys (TFDs), have the potential to circumvent current resistance mechanisms by acting on novel targets. However, their full translation into clinical application requires efficient delivery strategies and fundamental comprehension of their interaction with target bacterial cells. To address these points, we employed a novel cationic bolaamphiphile that binds TFDs with high affinity to form self-assembled complexes (nanoplexes). Confocal microscopy revealed that nanoplexes efficiently transfect bacterial cells, consistently with biological efficacy on animal models. To understand the factors affecting the delivery process, liposomes with varying compositions, taken as model synthetic bilayers, were challenged with nanoplexes and investigated with Scattering and Fluorescence techniques. Thanks to the combination of results on bacteria and synthetic membrane models we demonstrate for the first time that the prokaryotic-enriched anionic lipid Cardiolipin (CL) plays a key-role in the TFDs delivery to bacteria. Moreover, we can hypothesize an overall TFD delivery mechanism, where bacterial membrane reorganization with permeability increase and release of the TFD from the nanoplexes are the main factors. These results will be of great benefit to boost the development of oligonucleotides-based antimicrobials of superior efficacy

    Full design automation of multi-state RNA devices to program gene expression using energy-based optimization

    Get PDF
    [EN] Small RNAs (sRNAs) can operate as regulatory agents to control protein expression by interaction with the 59 untranslated region of the mRNA. We have developed a physicochemical framework, relying on base pair interaction energies, to design multi-state sRNA devices by solving an optimization problem with an objective function accounting for the stability of the transition and final intermolecular states. Contrary to the analysis of the reaction kinetics of an ensemble of sRNAs, we solve the inverse problem of finding sequences satisfying targeted reactions. We show here that our objective function correlates well with measured riboregulatory activity of a set of mutants. This has enabled the application of the methodology for an extended design of RNA devices with specified behavior, assuming different molecular interaction models based on Watson-Crick interaction. We designed several YES, NOT, AND, and OR logic gates, including the design of combinatorial riboregulators. In sum, our de novo approach provides a new paradigm in synthetic biology to design molecular interaction mechanisms facilitating future high-throughput functional sRNA design.Work supported by the grants FP7-ICT-043338 (BACTOCOM) to AJ, and BIO2011-26741 (Ministerio de Economia y Competitividad, Spain) to JAD. GR is supported by an EMBO long-term fellowship co-funded by Marie Curie actions (ALTF-1177-2011), and TEL by a PhD fellowship from the AXA Research Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Rodrigo Tarrega, G.; Landrain, TE.; Majer, E.; Daros Arnau, JA.; Jaramillo, A. (2013). Full design automation of multi-state RNA devices to program gene expression using energy-based optimization. PLoS Computational Biology. 9(8):1003172-1003172. https://doi.org/10.1371/journal.pcbi.1003172S1003172100317298Isaacs, F. J., Dwyer, D. J., & Collins, J. J. (2006). RNA synthetic biology. Nature Biotechnology, 24(5), 545-554. doi:10.1038/nbt1208Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., & Collins, J. J. (2004). Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 22(7), 841-847. doi:10.1038/nbt986Lucks, J. B., Qi, L., Mutalik, V. K., Wang, D., & Arkin, A. P. (2011). Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proceedings of the National Academy of Sciences, 108(21), 8617-8622. doi:10.1073/pnas.1015741108Mutalik, V. K., Qi, L., Guimaraes, J. C., Lucks, J. B., & Arkin, A. P. (2012). Rationally designed families of orthogonal RNA regulators of translation. Nature Chemical Biology, 8(5), 447-454. doi:10.1038/nchembio.919Bayer, T. S., & Smolke, C. D. (2005). Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nature Biotechnology, 23(3), 337-343. doi:10.1038/nbt1069Nakashima, N., & Tamura, T. (2009). Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Research, 37(15), e103-e103. doi:10.1093/nar/gkp498Callura, J. M., Cantor, C. R., & Collins, J. J. (2012). Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences, 109(15), 5850-5855. doi:10.1073/pnas.1203808109Beisel, C. L., Bayer, T. S., Hoff, K. G., & Smolke, C. D. (2008). Model‐guided design of ligand‐regulated RNAi for programmable control of gene expression. Molecular Systems Biology, 4(1), 224. doi:10.1038/msb.2008.62Qi, L., Lucks, J. B., Liu, C. C., Mutalik, V. K., & Arkin, A. P. (2012). Engineering naturally occurring trans -acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 40(12), 5775-5786. doi:10.1093/nar/gks168Carothers, J. M., Goler, J. A., Juminaga, D., & Keasling, J. D. (2011). Model-Driven Engineering of RNA Devices to Quantitatively Program Gene Expression. Science, 334(6063), 1716-1719. doi:10.1126/science.1212209Rodrigo, G., Landrain, T. E., & Jaramillo, A. (2012). De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences, 109(38), 15271-15276. doi:10.1073/pnas.1203831109Brantl, S. (2002). Antisense-RNA regulation and RNA interference. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1575(1-3), 15-25. doi:10.1016/s0167-4781(02)00280-4Majdalani, N., Vanderpool, C. K., & Gottesman, S. (2005). Bacterial Small RNA Regulators. Critical Reviews in Biochemistry and Molecular Biology, 40(2), 93-113. doi:10.1080/10409230590918702Selinger, D. W., Cheung, K. J., Mei, R., Johansson, E. M., Richmond, C. S., Blattner, F. R., … Church, G. M. (2000). RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nature Biotechnology, 18(12), 1262-1268. doi:10.1038/82367Yelin, R., Dahary, D., Sorek, R., Levanon, E. Y., Goldstein, O., Shoshan, A., … Rotman, G. (2003). Widespread occurrence of antisense transcription in the human genome. Nature Biotechnology, 21(4), 379-386. doi:10.1038/nbt808Wang, X.-J., Gaasterland, T., & Chua, N.-H. (2005). Genome Biology, 6(4), R30. doi:10.1186/gb-2005-6-4-r30Stojanovic, M. N., & Stefanovic, D. (2003). A deoxyribozyme-based molecular automaton. Nature Biotechnology, 21(9), 1069-1074. doi:10.1038/nbt862Seelig, G., Soloveichik, D., Zhang, D. Y., & Winfree, E. (2006). Enzyme-Free Nucleic Acid Logic Circuits. Science, 314(5805), 1585-1588. doi:10.1126/science.1132493Yin, P., Choi, H. M. T., Calvert, C. R., & Pierce, N. A. (2008). Programming biomolecular self-assembly pathways. Nature, 451(7176), 318-322. doi:10.1038/nature06451Ran, T., Kaplan, S., & Shapiro, E. (2009). Molecular implementation of simple logic programs. Nature Nanotechnology, 4(10), 642-648. doi:10.1038/nnano.2009.203Penchovsky, R., & Breaker, R. R. (2005). Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nature Biotechnology, 23(11), 1424-1433. doi:10.1038/nbt1155Salis, H. M., Mirsky, E. A., & Voigt, C. A. (2009). Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 27(10), 946-950. doi:10.1038/nbt.1568Laidler, K. J., & King, M. C. (1983). Development of transition-state theory. The Journal of Physical Chemistry, 87(15), 2657-2664. doi:10.1021/j100238a002Sosnick, T. R., & Pan, T. (2003). RNA folding: models and perspectives. Current Opinion in Structural Biology, 13(3), 309-316. doi:10.1016/s0959-440x(03)00066-6Yurke, B. (2003). Genetic Programming and Evolvable Machines, 4(2), 111-122. doi:10.1023/a:1023928811651Bandyra, K. J., Said, N., Pfeiffer, V., Górna, M. W., Vogel, J., & Luisi, B. F. (2012). The Seed Region of a Small RNA Drives the Controlled Destruction of the Target mRNA by the Endoribonuclease RNase E. Molecular Cell, 47(6), 943-953. doi:10.1016/j.molcel.2012.07.015Dawid, A., Cayrol, B., & Isambert, H. (2009). RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation. Physical Biology, 6(2), 025007. doi:10.1088/1478-3975/6/2/025007Lioliou, E., Romilly, C., Romby, P., & Fechter, P. (2010). RNA-mediated regulation in bacteria: from natural to artificial systems. New Biotechnology, 27(3), 222-235. doi:10.1016/j.nbt.2010.03.002Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E., & Pierce, N. A. (2007). Thermodynamic Analysis of Interacting Nucleic Acid Strands. SIAM Review, 49(1), 65-88. doi:10.1137/060651100Das, R., Karanicolas, J., & Baker, D. (2010). Atomic accuracy in predicting and designing noncanonical RNA structure. Nature Methods, 7(4), 291-294. doi:10.1038/nmeth.1433Vogel, J., & Luisi, B. F. (2011). Hfq and its constellation of RNA. Nature Reviews Microbiology, 9(8), 578-589. doi:10.1038/nrmicro2615Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G., & Collins, J. J. (2009). Synthetic Gene Networks That Count. Science, 324(5931), 1199-1202. doi:10.1126/science.1172005Rodrigo, G., Carrera, J., Landrain, T. E., & Jaramillo, A. (2012). Perspectives on the automatic design of regulatory systems for synthetic biology. FEBS Letters, 586(15), 2037-2042. doi:10.1016/j.febslet.2012.02.031Chin, J. W. (2006). Modular approaches to expanding the functions of living matter. Nature Chemical Biology, 2(6), 304-311. doi:10.1038/nchembio789McCaskill, J. S. (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29(6-7), 1105-1119. doi:10.1002/bip.360290621Chitsaz, H., Salari, R., Sahinalp, S. C., & Backofen, R. (2009). A partition function algorithm for interacting nucleic acid strands. Bioinformatics, 25(12), i365-i373. doi:10.1093/bioinformatics/btp212Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., & Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte f�r Chemie Chemical Monthly, 125(2), 167-188. doi:10.1007/bf00818163Andronescu, M., Zhang, Z. C., & Condon, A. (2005). Secondary Structure Prediction of Interacting RNA Molecules. Journal of Molecular Biology, 345(5), 987-1001. doi:10.1016/j.jmb.2004.10.082Mathews, D. H., Sabina, J., Zuker, M., & Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288(5), 911-940. doi:10.1006/jmbi.1999.2700Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.67

    'Computational evolution' offers riboswitch solution

    No full text

    End-specific covalent photo-dependent immobilisation of synthetic DNA to paramagnetic beads

    No full text
    corecore